
Some things just get better with age! 2013 marks the 25th anniversary of the birth of the Gedae technology. That’s right! It
was 25 years ago this year that Kerry Barnes and Bill Lundgren sketched out their first plans for Gedae. Back then the goal was much
less ambitious. Initially Kerry and Bill set out to create an autocoding tool to solve the big data problem for signal processing appli-
cations, specifically RADAR and SONAR. Gedae’s predominant historic use for signal processing made the use of the block diagram
dataflow language appropriate. 25 years later Gedae’s become so much more than originally intended.

To that end, we’re pleased to announce the release of Gedae 6.5, the first full release of the Idea Programming Language and initial
support for programming GPU’s. Formulated from the integration of mainstream language features the Idea language is familiar
and easy to learn. The Idea language was created to allow all parts of an application access to the parallel optimization capabilities
of the Idea Compiler. Built on the time tested, customer proven Gedae Idea Compiler, the Idea Language offers a new and easy way
to access the benefits of the compiler.

Be sure to check back often for updates to Gedae’s roadmap. And if you have feedback please share! Our customer’s feedback,
support, and vision have helped guide Idea to where it is today.

Issue No. 4, January 2013

SCOTCH, JEANS, FRIENDSHIP, GEDAE...

THE WATER COOLER

CSPI MultiComputer Division
announced a Value Added
Reseller relationship with
Gedae, Inc. CSPI MultiCom-
puter Division will market,

sell, and distribute the Idea Development Environ-
ment with its high performance embedded comput-
ing systems. This agreement significantly enhances
the set of application development tools available
to CSPI customers, expediting time to deployment
by reducing the complexity of programming CSPI’s
advanced multicore systems with complex memory
architectures.

“We are excited to offer our customers this tool set that
allows for rapid development of signal processing solu-
tions and the very quick dynamic reallocation of pro-
cesses in multicore environments for optimum tuning
of performance”
Paul Martino, Director of US Sales, CSPI.

Gedae offers an application development environ-
ment consisting of a language, compiler and thread
scheduler automatically optimizes the software tar-
geted for multiprocessor, multicore or heterogeneous
systems beneficial to CSPI’s TeraXP™ OpenVPX™
Embedded Servers and 4000 SERIES AdvancedTCA
product line.

“We are pleased with CSPI’s selection of Gedae’s Idea
Development Environment as the solution to their cus-
tomer’s demands for multicore software tools,”
said Bill Lundgren, President and CEO of Gedae, Inc.
“Idea makes it easy to get the best performance from
CSPi’s top of the line computing systems. This agree-
ment represents a significant event in Gedae, Inc.’s
growth.”

 GEDAE IS GROWING:

1247 N Church Street, STE 5, Moorestown, NJ 08057 USA www.gedae.com; gedae@gedae.com; (856) 231-4458

G E D A I C A
pl n 1.of or relating to the culture, artifacts, customs of Gedae

 CSP, Inc. becomes Gedae VAR!
Can Idea be used to write your entire applciation?
Yes, but there are really 3 parts to the question.

Idea is a textual language but it can be edited using
either a graphical or textual editor. Historical users of Ge-
dae expect that the application will be a block diagram
– and indeed the textual and graphical versions can be
freely intermixed. But if a developer prefers she/he can
build an application that is completely textual.

The second aspect to consider is “can a complete sys-
tem be built using Idea?” Again, yes! Idea is a general
purpose language that equally supports signal, image
and data processing, and control. Idea can and should

be used to write the whole of the software for any sensor processing
system.

A final consideration is “When the compiler and/or development tools
fall short, what recourse do I have?” In short, Idea is far more general
purpose and capable of handling entire sensor processing applications
TODAY. And if there is a shortfall Gedae’s unsurpassed customer sup-
port will be there to live up to our mission of ensuring every customer’s
success.

On top of that the Idea Compiler, the heart of the technology, is the
same reliable, time tested compiler for targeting multicore and multipro-
cessor GPPs and DSPs you know and love. Of course, Idea can’t extend
system performance beyond the limits of the hardware!

25 hours for 25 years! Limited to the first three new customers to
respond to our 25 for 25 offer. With the purchase of any production li-
cense, get 25 hours of world class development support to help you get
started harnessing the power of Gedae.

DOLLARS AND SENSE

Submit questions via email at thewatercooler@gedae.com.

Figure 3: Infinite Do/While Loop Example

/* roi - represents target information
 MaxRecords - maximum number of tracks in database */

rec Simple(int roi, int MaxRecords) {
 range n = MaxRecords;
 Record initialize = {-1,0,0};
 do (Record db[n] = initialize, cnt = 0) {
 pop roi;
 range n1 = constrain(cnt,MaxRecords);
 roi_match[n1] = db[n1].roi == roi; // is roi in db?
 idx[found] = find(roi_match,1); // which record if any?
 if(#found != 0) { // use logical operation to constrain
 idx0 = idx[0];
 Record rec = {idx0, roi, db[idx0].cnt+1};
 } else {
 idx0 = cnt; // new record
 cnt = cnt + 1;
 Record rec = {idx0,roi,1};
 }
 db[n] = set(db,rec,idx0);
 push rec;
 } while(1);
}

Figure 1: Idea Header File

struct Record { // represents a track
 int idx; // the index of this record in database
 int roi; // sensor input - region of interest
 int cnt; // number of times record has been updated
}

Figure 2: Idea Syntax for Declaring Persistent Data

do (<initialize persistent data>) {
 pop <variable from outside loop body>; // stream data into loop
 <code to process persistent data>
 push <variable to outside loop body>; // stream data out of the loop
} while(1);

Gedae 6.5 introduces constructs that support the direct expression of database operations. An Idea header file (.ih ex-
tension) is shown in Figure 1. It generally follows the C syntax for a data structure but takes its name from the structure
name. The example shown has only integers
but can also include mixed data types includ-
ing other data structures.

Code for the example track database pro-
cessing is shown in the code in Figure 3.
One of the key characteristics of the Idea
language is the limitation that a name can
only be used one time on the LHS of an assignment expression. But a database is by its very nature created and then
modified many times. In this example we show how that can be done using the Idea language.

The syntax for declaring persistent data is shown in Figure 2 below.

Variables declared in the initialization section of a loop are called iteration variables. If iteration variables are used on
the RHS of expressions in the body of the loop, the variable refers to the current value of the token, not the new value
computed during the current iteration. In the example below db[n] and cnt are iteration variables. The variable db is a
vector of records (nominally tracks). It sets the maximum size of the database. The variable cnt is initialized to zero and
indicates the number of records cur-
rently stored in the database. A modi-
fied record is inserted back into the
database using the set() function.

In these examples an infinite do/while
loop is used. (Gedae will introduce
the equivalent syntax, database () { }, in
Gedae 7.0 release in May 2013.) One
of the unusual features of the Idea
language is that many infinite loops
can happily run at the same time. The
keywords pop and push are used to
get data into and out of an infinite
loop. A pop takes one token from an
external stream of data and a push puts
one token on an external stream. In the
example shown in Figure 3 a region of
interest (roi) is streamed into the loop
and the new updated record (rec) is
streamed out of the loop.

A more complete tracking example is
implemented in the application exam-
ples/Tracking/test_InstantiateTracks.fg
found in Gedae’s released library.

CODE, TOOLS & TIPS Tracking Example

Is there an example you’d like to see in CODE, TOOLS & TIPS? — We’re looking for industry parallel processing
applications to implement in Idea Language and publish results. Submit yours today via cc@gedae.com.

